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A database was probed with artificial neural network (ANN) and multivariate logistic regression (MLR)
models to investigate the efficacy of predicting PCR-identified human adenovirus (ADV), Norwalk-like virus
(NLV), and enterovirus (EV) presence or absence in shellfish harvested from diverse countries in Europe
(Spain, Sweden, Greece, and the United Kingdom). The relative importance of numerical and heuristic input
variables to the ANN model for each country and for the combined data was analyzed with a newly defined
relative strength effect, which illuminated the importance of bacteriophages as potential viral indicators. The
results of this analysis showed that ANN models predicted all types of viral presence and absence in shellfish
with better precision than MLR models for a multicountry database. For overall presence/absence classifica-
tion accuracy, ANN modeling had a performance rate of 95.9%, 98.9%, and 95.7% versus 60.5%, 75.0%, and
64.6% for the MLR for ADV, NLV, and EV, respectively. The selectivity (prediction of viral negatives) was
greater than the sensitivity (prediction of viral positives) for both models and with all virus types, with the ANN
model performing with greater sensitivity than the MLR. ANN models were able to illuminate site-specific
relationships between microbial indicators chosen as model inputs and human virus presence. A validation
study on ADV demonstrated that the MLR and ANN models differed in sensitivity and selectivity, with the ANN

model correctly identifying ADV presence with greater precision.

Health risks associated with the consumption of virally con-
taminated shellfish are well documented, as is the need for a
more reliable viral indicator system by the industry (14, 17).
Interdisciplinary studies are needed to define the underlying
relationships between harvest area water quality, shellfish type,
treatment processes, and viral presence, particularly with the
advent of advanced detection and modeling methods. New
understandings can be obtained with the application of new
data-driven, fuzzy-logic-based models that can handle multi-
ple, interrelated inputs and learn complex relationships. How-
ever, for the application of these new models, large, robust,
multivariable, complete, and well-controlled datasets need to
be created. A multicountry study in Europe has collected vital
data in an effort to relate the viral contamination of shellfish
with potential indicators. Analysis of these results has been
reported earlier by Formiga-Cruz et al. (6, 7), and the database
consisted of 468 individual observations from geographically
diverse areas collected over 18 months. The resultant database
was provided to a team of engineers and modeling experts for
further probing with new artificial neural network (ANN)
modeling tools under the hypothesis that these new modeling
tools would be able to better define the relationships between
viral presence/absence and potential water quality indicators
than multivariate logistic regression (MLR) and provide more
precise predictions with ANN models.
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Neural network models. Multilayered feed-forward net-
works have proven to be very powerful computational tools
that excel in pattern recognition and function approximation.
The general structure of a feed-forward neural network is
shown in Fig. 1. Neurons, which are activation functions, are
arranged in different horizontal layers, with multiple vertical
layers possible. The nodes in the input layer receive the inputs
of the model, and they flow through the hidden layer(s) inter-
nal to the network and produce outputs at nodes in the output
layer. The working principle of feed-forward neural network is
available elsewhere (15). Mathematically, a three-layer neural
network with 7 input nodes, J hidden nodes in a hidden layer,
and K output nodes, can be expressed as follows:

e

where O, is the output from the kth node of the output layer,
x; is the input to the network at node i of the input layer, wi is
the weight between the ith node of the input layer and the jth
node of the hidden layer, b/ is the bias term added to the jth
hidden node, wl’»}:’ is the weight between the jth node of the
hidden layer and kth node of the output layer, and b{ is the bias
term added to the kth output node. The architecture of the
network shown in Fig. 1 can be summarized as 3:3:1 for three
input nodes, three hidden nodes in a single hidden layer, and
one output node. Each node has a function assigned to it, and
the optimization of an ANN model often involves selecting the
optimal combination of architecture (number of input and

hidden nodes) and node functions (sigmoidal, hyperbolic, lin-
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FIG. 1. Feed-forward neural network model.

ear, etc.) as well as selecting the correct input parameters.
Neural networks, due to this complex interlocking structure,
are excellent at applications where they are applied as univer-
sal function approximators for complex nonlinear relationships
(9). Neural networks also have benefit in that they can learn
the underlying functional relationships without being ham-
pered by the distribution and independence issues common in
environmental data.

Feed-forward neural networks are most commonly trained
using a back-propagation algorithm. The back-propagation al-
gorithm uses a gradient descent method for error minimization
(18) on a randomized sort of the database of observations. In
training, the weights on each connection are adjusted to yield
the minimum error between the computed output pattern and
the desired output pattern based on the method of least
squares. The basic procedure used to train the network is
embodied in the following steps: (i) apply input observations
from training set to the network and calculate the correspond-
ing output values, (ii) compare the computed output with the
known output values and determine a measure of the error,
(iii) determine corrections (increase or decrease) to the con-
nection weights, (iv) apply the corrections to the weights, and
(v) repeat items i through v with all the training vectors until
the error for all vectors in the training set is reduced to an
acceptable value.

RSE. In this paper, an approach using a first-order method
based upon the relative strength effect (RSE) to evaluate the
relative importance of input variables to the prediction of viral
presence is used. This approach is based upon the work of Kim
et al. (13), who proposed the RSE as a means to differentiate
the relative influence of different input variables. They defined

the RSE as the partial derivative of the output variable y,, %

i

The RSE could be used to measure the relative importance of

inputs in contributing to predict outputs. When aka 1S positive,

an increase in input increases the output, and if it is negative,
an increase in input causes a fall in output. Among the esti-
mated RSE values of different inputs, the absolute maximum
RSE value is used for normalizing the RSE values of all the
inputs. Hence, for a considered data set, the RSE value would
be either +1 or —1 for one value and for all other inputs, it will
be in between +1 and —1. For basic screening, the average
RSE value of an input is considered, i.e., if we considered p
data sets, the RSE value for each input will be the average of
RSE for that input in p data sets. The larger the absolute value
of the RSE, the greater the contribution of that input variable
is.

MATERIALS AND METHODS

Sampling and microbial assay. Detailed information on the sampling and
assay methods is reported in Formiga-Cruz et al. (6, 7). Briefly, bivalve molluscan
shellfish were collected monthly from 20 sites with different levels of fecal
pollution over an 18-month period with analysis of the meat for human enteric
virus presence (adenovirus [ADV], Norwalk-like viruses [NLV], and enterovirus
[EV]) by nested PCR. Other microbial indicators in the shellfish tissue (Esche-
richia coli, somatic coliphages, F-specific RNA coliphages, Bacteroides fragilis
phages) were quantified. Information on the country, area, season, mollusk type,
temperature, and depuration status were added to the microbial results, and the
entire resultant data set consisted of 468 individual observations.

Once collected, shellfish were shipped directly to each laboratory via cold
storage within a 24-h period where Escherichia coli and bacteriophage groups
were determined immediately. The sampling regime also included paired sam-
ples before and after depuration. To analyze for somatic coliphages and for
bacteriophages infecting Bacteroides fragilis, shellfish flesh and liquor were col-
lected into a sterile beaker with glycine buffer, pH 10 (1:5, wt/vol). For F-specific
RNA bacteriophages (F-specific coliphages), peptone water (1:2, wt/vol) was
added to the shellfish meat/liquor mixture. After the elution solutions were
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added, the shellfish was homogenized with a blender and stirred for a 15-min
contact time and then pH adjusted to 7.2 + 0.2. The homogenate was then
centrifuged at 2,170 X g for 15 min at 4°C. Phages contained in the supernatant
were quantified by the double-agar-layer method with appropriate hosts (E. coli
WGS5-SP, Salmonella enterica serovar Typhimurium WG49, B. fragilis RYC2056-
BP). Standardized protocol for all phage assays was used (10-12). E. coli was,
with little modification, assayed by most probable number (MPN) as described by
Donovan et al. (4), which consisted of a two-stage, five-tube, three-dilution MPN
method. In brief, it required initial inoculation in mineral-modified glutamate
broth and further confirmation by subculturing positive tubes onto a chromo-
genic agar to detect B-glucuronidase activity. A program for quality assurance
and control for all phage types and E. coli was followed to ensure interlaboratory
consistency. Human enteric viruses (ADV, NLV, EV) were detected by nested
PCR after elution from tissue and liquor with glycine buffer 0.25 N at pH 10 (1:5,
wt/vol) as described by Formiga-Cruz et al. (7) and then stored at —70 + 10°C
until the detection assay.

MLR modeling. Details of the prior regressions between indicators and viral
presence/absence can be found in the work by Formiga-Cruz et al. (6). Microbial
concentration values for E. coli, F-specific coliphages, somatic coliphages, and B.
fragilis phages were transformed by the log;(x + 1) function before fitting for the
presence/absence of individual virus types by MLR run on the statistical software
SPSS 10.0.7. The six input parameters used for the MLRs included E. coli,
somatic coliphages, F-specific coliphages, B. fragilis phages, mollusk type, and
country. An additional MLR run on Excel with all nine input parameters, but
utilizing only a subset of the data to fit the model, was run for the purpose of
verifying ADV presence.

Artificial neural network modeling. The same database used by the MLR done
by Formiga-Cruz et al. (6) was used for ANN modeling efforts. Before applying
the ANN model, the microbial input data were transformed using the log,(x +
1) and then normalized by dividing the actual data value by 1.2 times the
maximum value found in the input field. The microbial data for predicting NLV
presence underwent a second transformation by the square root before normal-
ization. The normalization was done to provide an equivalent numerical basis for
judging the RSE of the numerical, microbial input parameters (E. coli, F-specific
coliphages, somatic coliphages, and B. fragilis phages). In addition to these four
microbially based numerical inputs, five heuristic knowledge inputs of mollusk
type, area, month, and depuration status were used. In total, there were as many
as nine and as few as six inputs for the models, each model using some combi-
nation of these inputs found to be optimal by initial ANN training attempts.

The heuristic input variable area was modified from the one reported by
Formiga-Cruz et al. (6) that referred to areas classified as A or B relative to the
ability to consume shellfish directly or after depuration. The variable area as used
in this study reflected the relative level of fecal contamination at the sampling
site on the day of observation rather than an average classification. The variable
area was defined as one of four classifications corresponding to the value of the
sum of the E. coli and somatic coliphages concentrations for the individual
observation. If the E. coli and somatic coliphages concentration sum was <1,200,
then the area coding was 1 for that observation. If the sum was between 1,201 and
12,000, then the area coding was 2. If the sum was between 12,001 and 60,000,
then the area was coded as 3. If the sum was >60,000, then the area coding was
4. This classification scheme captured the relationship between somatic bacte-
riophage and potential host bacteria. The classification scheme created a way to
relate diverse geographic sites based upon indicator-estimated fecal loadings
within the shellfish. In addition, the input parameter date was split into 12
classifications, with January assigned a value of 1 and December a value of 12.

Separate ANN models were built to predict ADV, NLV, and EV presence/
absence with Norwalk-like viruses of genogroups I and II lumped together into
a single presence signal for NLV. Lumping the two groups of NLV together was
done to provide more NLV-positive results for the purposes of training the ANN
to avoid the phenomenon of memorization (overfitting) that can occur with
limited observation and complex model structures. From prior experience, da-
tabases used for ANN classification modeling should contain more than 100
observations split evenly between outcomes to minimize memorization and em-
phasize generalization. There are several theory-based approaches outlined by
Sarle (19) that provide guidelines for avoiding overfitting. One of the simplest is
to maximize the number of data observations used, using between 30 and 5 times
as many training cases as there are weights in the network, with fewer observa-
tions required as noise in the data decreases. The output of the ANN model was
coded 0 for virus presence and 1 for virus absence, with 0.5 serving as the
breakpoint between classifications per convention. The ANN model used for
each individual type of human virus presence/absence prediction was a feed-
forward ANN model with back propagation training developed using the soft-
ware Neurosort VerlI (16) created by some of the authors (3) and recently
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TABLE 1. Input parameters used for viral presence modeling

by ANN
. All .
Type and input countries Spain Sweden Greece United
parameter combined Kingdom

Heuristic knowledge

Country X

Month X X X X

Area X X X X X

Mollusk X X X

Depuration X X X
Numerical knowledge

E. coli X X X X X

Somatic coliphages X X X X X

F-specific coliphages X X X X X

B. fragilis phages X X X X X

modified to contain a new calculation of the RSE. Modeling was done first for all
countries’ data combined to establish the optimum model architecture and node
functions for each virus type, and then the established ANN model for each virus
type was applied on a country-by-country data split basis to examine geographical
differences in the relationships between indicators and the specified viral pres-
ence by RSE. The input variables for each of these individual models are
presented in Table 1. The architecture and node functions for the combined data
models are presented in Table 2. For direct comparison, RSE values were
normalized by division with the sum of the absolute value of all input RSE values
calculated for the trained ANN model.

For the comparison results presented in this paper, all of the data observations
were used to train the ANN models. The MLR models constructed by the
authors (for selected viral groups and input parameter selections not addressed
by Formiga-Cruz et al. (6) also used all of the observations for performance
testing. This was done so that direct comparisons of accuracy and generalization
between the models could be made on equal datasets handled similarly. Accuracy
was computed by dividing the number of correct predictions in a classification by
the total number of observations available in that classification for viral presence
(sensitivity), viral absence (selectivity), and combined accuracy [(number of viral
presence correct + number of viral absence correct)/total number of observa-
tions)]. With the limited number of virus-positive samples in the groups identi-
fied, only the combined ADV data set was able to support ANN modeling and
validation with split datasets, where the model was verified on data observations
not used for training.

RESULTS

Modeling of the combined database. As can be seen in Table
3, The most frequently identified virus group in shellfish was
adenovirus (39.1%). ADV was found at twice the frequency of
NLV and EV groups. Yet the overall prevalence of isolating
viruses from the shellfish was low, resulting in a smaller pres-
ence training, or fitting for MLR data set for the models rather
than for the absence of viruses. The smallest number of posi-
tive samples was shown for NLV, with only 69 positive events
from 468 observations for the ANN and MLR models to train
and fit upon. As noted by Formiga-Cruz et al. (7), the greater

TABLE 2. Architecture and node functions for ANN modeling of
virus presence on combined country dataset

Node function

. Optimal
Virus type J
architecture Hidden layer Output layer
Adenovirus 9:20:1 Sigmoidal Sigmoidal
Norwalk-like viruses 9:16:1 Hyperbolic Sigmoidal
Enterovirus 9:20:1 Sigmoidal Sigmoidal
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TABLE 3. Frequency of virus presence and absence

Total no. of N ..
o. of positive samples
OSal’l’flplCS | (% in country)
Virus group (% of total)
Positive Negative  Spain  Sweden Greece KII.Jnngi;eo(:n
Adenovirus 182 (40) 284 (61) 37(36) 46(85) 20 (14) 79 (46)
Norwalk-like 69 (15) 398 (85) 24(23) 17(32) 5(4) 23(13)
viruses
Enterovirus 86 (18) 380 (82) 26(25) 13(24) 22(15) 25(14)

prevalence of NLV was found in three countries, Spain, the
United Kingdom, and Sweden, with less than 5% prevalence in
Greece shellfish samples. This means that the models for NLV
were basically training or fitting on only three countries’ inputs.
This geography-specific relationship for a particular virus type
has bearing upon the relative importance of input parameters
to the ANN and leads to questions about the appropriateness
of combining all results into a single data set for modeling.

The descriptive power, or performance, of MLR and ANN
modeling for the presence and absence of human viruses on
the combined database is shown in Table 4. ANN clearly out-
performs the MLR modeling, as demonstrated with more than
95% total accuracy for each virus group. The samples where
virus was not detected were predicted with greater precision
than for those where virus was present for both types of mod-
eling efforts. Enterovirus presence was least well predicted by
ANN (76.4%) but still was an improvement over the MLR
results reported by (54%) Formiga-Cruz et al. (6). The ANN
approach was able to learn the complex relationships between
multiple input parameters and the desired output to a greater
degree than the published MLR models.

Even with the least number of positive samples, NLV pres-
ence was best predicted by ANN of the three viral groups
studied, with 100% accuracy on predicting shellfish samples
that did not contain NLV genetic material. Previous ANN
modeling for combined type I and II NLV presence (2) re-
ported a correct NLV presence prediction of only 73.9%. This
was improved in the current study to 92.8% by using a different
codification for the input variable area and different architec-
ture, numerical input transformation, and node functions. Yet
there were a few errors in predicting NLV-positive observa-
tions for Greece, Sweden, and the United Kingdom, with 2 of
5,2 of 17, and 1 of 23 mispredicted, respectively. Attempts to
fit an MLR model to a combined NLVI and NLVII data set

TABLE 4. Relative prediction performance of MLR versus
artificial neural network on combined all-country database

Total percent accuracy (% positives correct
versus % negatives correct)

Virus group
MLR prediction ANN prediction
Adenovirus 60.5 (46:70) 95.9 (91:99)
Norwalk-like viruses 75.1¢ (71:76%) 98.9 (93:100)
Enterovirus 64.6 (54:67) 95.7 (76:100)

“ Estimated as an average of the two MLRs for NLVI and NLVII presented
by Formiga-Cruz et al. (6).
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refused to converge; therefore, the separate MLR models pub-
lished by Formiga-Cruz et al. (6) were cited for comparison.

For all the viral groups, the ANN model was learning a
pattern between the numerical and heuristic inputs that was
quite distinct and resulted in wide separation of predictions.
Frequency graphs that show this separation for each virus type
are shown in Fig. 2. The majority of the ANN data predictions
are tightly clustered around the extreme ends of the range,
close to either 0 or 1. Only for EV are there any output values
in the middle range, close to 0.5. This type of linear cluster
analysis on prediction values indicates that the underlying
functions between virus presence/absence and the indicators
selected is very specific.

Using a normalized relative strength effect (NRSE) to in-
vestigate the relative influence of the numerical and heuristic
input parameters on ANN modeling, it can be seen (Table 5)
that for predicting virus presence, bacteriophages are impor-
tant numerical input parameters, with somatic coliphages
ranked highest in all cases, with more than 25% of the strength
of prediction based upon these values. In overall NRSE rank
for predicting NLV and EV presence, the important microbial
input parameters are the same with descending order of im-
portance concentrations of somatic coliphages, F-specific co-
liphages, and B. fragilis phages. Except for ADV, values calcu-
lated for the bacteriophage groups measured in the shellfish
were of more importance than concentrations of E. coli by
more than twice. Only for predicting the ADV in shellfish are
E. coli concentrations of equal numerical importance to so-
matic coliphages for the ANN model. It would seem that for
predictions of different groups of human viruses, there are
differences in the importance of the indicators selected for use
as inputs to the models, but viable somatic coliphages are
highly correlated with genetically detected human virus pres-
ence.

For the heuristic input parameters, to predict NLV, the time
of year was as important as the country the data originated
from. This is to be expected, as the distribution of NLV de-
tection in shellfish was not evenly distributed across all coun-
tries and across all months. For ADV and EV, the type of
mollusk was an important input, but depuration did not rise to
a contribution larger than 10% of the prediction, as indicated
by NRSE. The relative insignificance of depuration is in agree-
ment with that cited by Formiga-Cruz et al. (6).

ANN modeling results produced utilizing the entire set of
observations runs the risk of overfitting, or memorizing, and
not generalizing the underlying pattern. Models should be
evaluated on their ability not only to describe the relationship
between inputs and outputs but to generalize that relationship
to observations not known to the model during fitting or train-
ing. Therefore, it was important to verify ANN models with a
separate modeling exercise where part of the data set was
withheld from training for prediction verification. The only
data set that had enough positive observations to run a classic
training and verification exercise upon was that for ADV.
Therefore, a separate ANN model with architecture ratio of
9:18:1, trained on all nine normalized input parameters, was
developed on a randomly selected 400-observation subset of
the total ADV database and then verified on the 68 verification
observations withheld from training. An MLR was fit using the
same input variables on the same datasets for direct compar-
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FIG. 2. Prediction frequency charts produced by ANN models for virus in shellfish.

ison. The results are presented in Table 6. Overall, the ANN but accuracy was less than that desired for a useful commercial
model predicted 414 of 468 data observations correctly for a model. The ANN model predicted the absence of ADV genetic

combined accuracy of 88.5% compared to MLR, whose com- material with greater precision in the training data set slightly
bined accuracy was 66%. The MLR model verification results better than the MLR model.
clearly indicate a model bias toward negative prediction and Frequency graphs of prediction values for individual obser-

demonstrated poor sensitivity (21%). The ANN model had vations (Fig. 3) show that the majority of ANN predictions
greater sensitivity on the validation set (41%) than the MLR, clustered toward the ends of the 0-1 prediction scale, with the
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TABLE 5. Ranked importance of input parameters to ANN model
based upon NRSE

Ad . Norwalk-like L
€novirus . Enterovirus
Input parameter (NRSE Zgﬁ?}; (NRSE
value) value) value)
Numerical
Somatic coliphages 1(0.29) 1(0.28) 1(0.25)
F-specific coliphages 3(0.11) 2(0.11) 2(0.16)
B. fragilis phages 4(0.01) 3(0.08) 3(0.14)
E. coli 2(0.27) 4(0.02) 4 (0.06)
Heuristic
Area 2 4 14
Month 3 2¢ 5
Mollusk 14 3 24
Country 4 14 4
Depuration 5 5 3
“NRSE, >0.10.

majority of predictions less than 0.2 units from either extreme.
This is in contrast to the frequency graphs for the MLR (Fig.
3) that show the majority of predictions for both testing and
fitting to be clustered in the center of the range, with no
predictions observed at the extremes of 0 or 1. It is clear by
comparing the graphs that the ANN is providing more predic-
tion separation for the presence or absence of ADV when
trained on the same input variables than the MLR model.

Two-country comparison modeling. Applying a Kruskal-
Wallis one-way analysis of variance on Ranks-log-transformed
microbial data from each country provides information on the
pattern of differences in the average microbial concentrations
in shellfish between countries (Table 7). Spain and Greece
have the least number of differences in average microbial in-
dicator concentration, while the concentrations from the
United Kingdom and Spain, and Sweden and Greece, were the
most different from each other in pairwise analysis of variance
comparisons (P < 0.05). Spain and Sweden had different av-
erage indicator concentrations in shellfish, with the exception
of somatic coliphages. Spain and United Kingdom had signif-
icant differences in all of the average indicator concentrations.
Sweden and United Kingdom had similar average concentra-
tions for E. coli and F-specific coliphages but different concen-
trations for B. fragilis phages and somatic coliphages. Noting
these differences led to questions about geographically induced
differences in the underlying patterns between indicator con-
centration and viral presence/absence.

TABLE 6. Verification of ANN and MLR models for
adenovirus prediction

Prediction results

Model used and

dataset Viral presence (no. Viral absence (no.
predicted/total no.) predicted/total no.)
ANN
Training set 83% (127/153) 98% (243/247)
Verification set 41% (12/29) 82% (32/39)
MLR
Fitting set 26% (39/153) 92% (228/247)
Verification set 21% (6/29) 95% (37/39)

ANN FOR DETECTING VIRUSES IN SHELLFISH 5249

In general, United Kingdom shellfish had higher coliform
and bacteriophage concentrations than all other countries
studied by Formiga-Cruz et al. (6, 7), with the exception of B.
fragilis phages in Sweden. However, this observation was influ-
enced by sampling site coverage. Sites were selected to cover a
range of all the fecal contamination levels found in the diverse
countries. The United Kingdom sampling plan included both
moderately polluted EU class C (shellfish must have less than
46,000 E. coli cells per 100 g of mollusk flesh and intravalvular
liquid and are subject to treatment before consumption) and
prohibited shellfish harvesting sites in order to investigate virus
occurrence in polluted sites restricted or prohibited for com-
mercial exploitation. Spain ranked lowest in shellfish coliform
and bacteriophage concentrations with the exception of so-
matic coliphages in Greece. This is to be expected, as the
sampling sites selected for Greece and Spain were reported to
have the highest incidence of sampling days where the poten-
tial E. coli host concentration was <230 MPN/100 g. It was
questioned if statistical differences in the input indicator con-
centrations would result in differences in the underlying pat-
terns between human virus and those indicators.

In order to investigate the country-specific differences that
might be present, three separate ANNs were developed on the
entire database to predict NLV presence in shellfish and the
NRSE values for input parameters calculated individually for
Spain, United Kingdom, and Sweden compared. Observations
from Greece were not included in this analysis because of the
paucity of positive observations. These ANN models all
achieved more than 97% prediction accuracy, with only the
model for Spain mispredicting any NLV-positive events (3 of
24). While these ANN models were developed on a suboptimal
number of observations which can lead to overtraining, some
trends can be noted. Sweden used less heuristic input param-
eters than the United Kingdom or Spain, comparing the over-
all rank and NRSE values for the input variables used by each
individual ANN shows that the relative importance of inputs
differs for each country (Table 8). Comparing Spain and the
United Kingdom, the relative importance of the time of year is
very clear. For Spain, time of year was the most influential
input variable, but this input contributed least to the prediction
of NLV in the United Kingdom. In the United Kingdom,
Sweden, and Spain, somatic and F-specific coliphages were
above an NRSE of 0.10, but only in Sweden were concentra-
tions of B. fragilis phages of relatively equal value to the co-
liphages groups. Indeed, all three types of bacteriophage were
equally important to predicting the presence of NLV in Swe-
den, while Spain and the United Kingdom model relied pri-
marily upon the coliphage groups, somatic coliphages, and
F-specific coliphages. In all three countries, E. coli is relied
upon for less than 10% of the prediction. While Sweden shares
with Spain strong reliance upon time of year, this input was not
important to prediction of NLV presence in United Kingdom
shellfish. The input variable area, which represented the nor-
malized sum of somatic coliphages and their potential hosts, E.
coli bacteria, helped further define the observations in each
country. Looking at just the numerical indicator organism in-
put NRSE, the rank order is the same for the United Kingdom
and Spain, suggesting that these databases could be merged.
Sweden has a very different pattern underlying the presence of
NLYV in shellfish, and this is borne out by the observation that
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MLR fitting results
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ANN training results
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FIG. 3. Prediction frequency curves for ADV validation study comparing MLR to ANN models using nine input variables.

of the five positive observations mispredicted by the combined,
all-country ANN model described prior, two of these were in
Sweden. Spain and the United Kingdom modeled best in the
combined ANN exercise, with only a single misprediction of
NLV presence in the United Kingdom database. Greece was
not expected to model well, as it did not have a sufficient
number of NLV positive observations to train an ANN model
upon.

DISCUSSION

Classification confidence. With regards to the levels of con-
fidence in the dichotomous classification values for the data
used in this study, all positive values were confirmed indepen-

TABLE 7. Significant differences in microbial indicator
concentrations by pairwise country comparison”

Country United Kingdom Sweden Greece
United Kingdom
Sweden SP, BP
Greece EC, SP, FP EC, SP, FP, BP
Spain EC, SP, FP, BP EC, FP, BP SP

“ EC, E. coli, SP, somatic coliphages; FP, F-specific coliphages; BP, B. fragilis
phages.

dently, primarily to eliminate the potential for false-positive
results as a result of cross-contamination. So the classification
of viral presence as indicated by genetic material could be
ascribed great confidence. Negative values, since the numbers
of viruses may be near the detection limit at times, do not have
the same confidence level, and there are assumed to be false
negatives, since not finding virus when there was virus in the
shellfish was coded into the database. There is an assumption
that an indefinable number of the negatives are in truth neg-
ative. So in the classification distribution, which is conceptually
binomial, there could be some observations that with repeated
testing would come to be represented by an average value
falling between 0 and 1, with the shape of that peak deter-
mined by the underlying distribution of viruses in the sample
and the number of replicate tests performed on a negative
sample.

ANN versus MLR modeling. Predictions of viral presence in
shellfish require models and indicator system that are capable
of precision and accuracy in predicting viral presence for the
protection of public health without undue burden on the shell-
fish industry. The large amount of uncertainty that exists
around simple linear regressions obtained from single indica-
tor systems cannot be tolerated for these types of public health
policy decisions. The degree of uncertainty must be reduced,
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TABLE 8. Country-specific differences in RSE values for ANN prediction of NLV*

If{oerlrf;Lli( Spain (NRSE) United Kingdom (NRSE) Sweden (NRSE)
1 Month (0.24) F-specific coliphages (0.29) Month (0.30)
2 Mollusk (0.15) Somatic coliphages (0.19) B. fragilis phages (0.17)
3 Somatic coliphages (0.15) Area (0.12) F-specific coliphages (0.17)
4 Depuration (0.14) Mollusk (0.12) Somatic coliphages (0.17)
5 Area (0.14) Depuration (0.11) E. coli (0.10)
6 F-specific coliphages (0.10) E. coli (0.06) Area (0.08)
7 E. coli (0.05) B. fragilis phages (0.06)
8 B. fragilis phages (0.02) Month (0.05)

“ NRSE is the normalized input of the absolute RSE value.

and MLR modeling has been a large step forward in this goal.
However, the underlying patterns between multiple, often in-
terrelated indicators and pathogen risk are very complex and
require a modeling system that can correctly capture this com-
plexity without losing precision, precisely the attributes ANN
models have been designed for. In this study, ANN modeling
was clearly superior to MLR modeling, capturing the pattern
between multiple indicators and genetic viral presence with
greater precision and accuracy. The performance of the logistic
function for modeling a nonlinear relationship is amplified by
the additional dimensionality introduced by the additional
structure of the ANN architecture. The fault does not lie with
the logistic regression function as the majority of ANN models
used for this study had in their hidden inner nodes, an MLR
calculating a result that is passed on to the next node with a
weighting factor for further processing. The ability of the ANN
to accurately describe convoluted functional surfaces that exist
between the input parameters and the output variable is due to
a matrix of weighted MLR equations all feeding into a final
MLR model. This interlocking complexity allows for the ANN
model to learn multiple paths to the same answer and create
different paths for shifts in input conditions that may occur
without negatively impacting the accuracy of output classifica-
tions.

There are several things to consider when comparing con-
ceptually dichotomous classification models. One is perfor-
mance (correct prediction) that demonstrates how the model is
capturing the description of the relationship between the in-
puts and the defined output. The other is generalization (val-
idation), which measures the strength of the descriptive model
to accurately predict a known outcome for an observation not
seen during the fitting or training processes. Both of these must
be evaluated with respects to the overall correct predictions
and correct predictions within a class (sensitivity and selectiv-
ity) and with an understanding of the confidence one has in the
correctness of the data classifications. Overall performance
and total numbers of correct prediction may be misleading, as
a correctly performing model should strike a balance between
sensitivity (correctly identifying a positive response) and selec-
tivity (correctly predicting a negative response). With unequal
numbers of positive and negative observations, it is possible to
have a high overall correct percentage but very poor perfor-
mance for one of the classifications. In the data provided, ADV
had a good split between the proportion of positive and neg-
ative samples (40:60) while NLV and EV were skewed with
more negative findings than positive (85% and 82%, respec-

tively). Therefore, for these virus types, it was important to
evaluate not only the overall correct classification but the se-
lectivity and sensitivity when evaluating performance.

The ANN models demonstrated superior performance in
comparison to the MLR models repeatedly. In total, there
were nine performance comparisons that could be made be-
tween the MLR and ANN models (Table 4) where the com-
bined database and all data were used to fit or train the re-
spective models for three different virus groups. When
measuring the sensitivity (number of observations where virus
presence was correctly predicted) and the selectivity (number
of observations where virus absence was correctly predicted),
the ANN model was superior to the MLR six of six times.
When looking at the total number of correct predictions for
each model per virus group, regardless of classification class,
the ANN model was superior three of three times. ANN clearly
outperformed the MLR modeling with more than 95% total
accuracy for each virus group. The samples where virus was not
detected were predicted with greater precision than for where
virus was present for both modeling efforts. Enterovirus pres-
ence was least well predicted by ANN (76.4%) but still was an
improvement over the MLR results reported by (54%) For-
miga-Cruz et al. (6). The ANN approach was able to learn the
complex relationships to a greater degree than MLR.

With regards to comparing generalization between the mod-
els, the validation study provided an opportunity to evaluate if
the fit or trained model could accurately predict the classifica-
tion of observations not known to the model. There are six
ways to compare the MLR to the ANN model results for ADV
classification presented in Table 6, and the ANN model was
superior in terms of absolute accuracy for five of those six.
First, the results of the fitting and training sets show that the
ANN model was more accurate in prediction in terms of sen-
sitivity, selectivity, and total correct predictions than the MLR
model. Of note is the fact that the MLR model was unable to
identify the most confident classification type, ADV presence,
with much greater accuracy (83% versus 26%). This was not
due to the phenomenon of classification skew that has been
observed by us to occur in MLR models, as there were 40% of
the total observations that were positive, and then confirmed as
positive. The MLR model was unable to pick up this very
strong signal in the fitting of the model, and this was repeated
in the accuracy results for the validation set where only 26% of
the confirmed positives are correctly identified. If one evalu-
ated only the overall accuracy of the validation set, with the
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ANN model providing 65% accuracy compared to the MLR
model’s 63%, this distinction would be lost.

The expanded dimensionality of the ANN model allows the
use of inputs that might not appear significant to simpler mod-
els and provides a basis to recommend multiphage assay. The
ANN modeling found value in input parameters that MLR
neglected to find of significance. Of particular interest are the
differences, and similarities, in the importance each modeling
approach assigned to the three phage groups. The MLRs re-
ported by Formiga-Cruz et al. (6) did not find somatic coliph-
ages to be significant for ADV or NLV type I prediction, but
ANN found the somatic coliphages to be the most significant
input parameter for all virus groups with the largest numerical
impact upon the output prediction. F-specific coliphages were
found by both ANN and MLR models to be linked to human
virus presence, but the B. fragilis phages were more important
to the ANN model than to the MLR models. For predicting
NLV, the B. fragilis phages were significant for the ANN, as
significant numerically as concentrations of F-specific coliph-
ages, but B. fragilis phages were not found to be significant for
the NLVI and NLVII MLR models. Of the human viruses,
only ADV was not significantly related to B. fragilis phages by
ANN modeling, a finding that was in agreement with the prior
MLR modeling results. The phages that infect B. fragilis have
been promoted by other researchers (21) as reliable indicators
for human wastes, and our results show a strong tie between
their presence and NLV and EV presence. It appears that one
cannot choose between these indicator phage groups when
designing a shellfish study, as they appear to be related differ-
ently to the human viruses of concern.

Of as large an import as the differences between the relative
significance of the input parameters are the similarities that
were found between the modeling studies with regards to the
significance of depuration to predicting viral presence. The
insignificance of depuration as an input parameter is supported
by the study by Formiga-Cruz et al. (6) that found that depu-
ration as currently commercially practiced was shown not to
appreciably reduce either the levels of F-RNA bacteriophages,
phages of B. fragilis, and somatic coliphages or the occurrence
of human pathogenic viruses in any of the countries shellfish.
The insignificance of depuration to the modeling efforts is
supported by the very low NRSE values and low ranking for
depuration as an input parameter for the ANN modeling done
in this study. Clearly, it made little difference to the ANN
model if depuration was practiced, and this agrees with the
lack of phage and viral clearing found by Formiga-Cruz et al.
(6) and by other researchers (1, 5, 20). The relative unimpor-
tance of E. coli as an input parameter adds strength to the
argument that reductions of E. coli cannot be relied upon to
determine the duration or effectiveness of depuration.

The application of ANN modeling for pathogen prediction
can provide a larger margin of safety around risk classifications
and can allow researchers to see if a strong pattern underlies
the data. The predictions produced by the ANN model sepa-
rate the acceptance range for prediction values with greater
distance than that found for MLR producing clusters of ob-
servations at the ends of the 0-1 range. This type of linear
cluster analysis on the prediction frequencies is one way that a
researcher can verify the existence of a strong pattern between
the inputs and desired output classification. It is a visual tool
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that provides a means to check the strength of a model for
dichotomous output classification by ANN or MLR modeling
techniques.

It has been said that ANN models are relatively insensitive
to the underlying distribution of the data, and often prediction
efficiencies cannot be improved by additional data transforma-
tion. However, in this study the prediction values for previously
reported ANN modeling of NLV (2) were improved by apply-
ing a second transformation by square root before normaliza-
tion and by modifying the node activation function from the
sigmoidal to the hyperbolic in the hidden layer (Table 2). The
ANN model was improved to the point where prediction of all
known observations was nearly perfect, and the tendency is to
drive the fit toward perfection. However, care should be ap-
plied to prevent overtraining when applying ANN models and
a balance must be struck between obtaining a perfect fit by
memorizing specific paths to the established outputs and gen-
eralizing the underlying pattern between the inputs and the
outputs with acceptable precision. Because of the ability of
ANN models to memorize, it is imperative that models be fit to
subsets of the data, and then their performance verified on
data not seen during training, when adequate numbers of ob-
servations are available.

Because ANN models are data dependent, requiring more
individual observations than normally required by simpler
modeling and statistical methods, research projects that choose
to apply this technique, or those that may provide a database
for future mining should be designed appropriately and the
potential impact of additional input parameters carefully con-
sidered. The creation of an ANN database for modeling can
get expensive, especially if a number of different potential
input parameters are being measured. However, the ability of
ANN models to capture changes in complex environmental
systems between a few strongly related inputs and the modeled
output that may be significantly modified by parameters that
other modeling techniques find insignificant, or worse that
introduce lack of discrimination, has the potential to deepen
our understanding of the relationships between pathogens and
their indicators. Funding agencies need to be aware of the
need to provide long-term support to build the potentially
expensive databases that will be useful to applications of su-
perior ANN modeling techniques.

Individual country ANN comparisons. The presence of NLV
in mussels from Sweden appears to rely more heavily upon
temporally associated input parameters than for shellfish from
Spain and the United Kingdom, with the B. fragilis phages
serving as a significant input for NLV presence prediction by
ANN models. The reliance upon time of year is in agreement
with Hernroth et al. (8) who noted the effect of spring thawing
and runoff on the prevalence of human viruses from all Swed-
ish harvesting areas tested. Comparing the MLR for Sweden
done by Hernroth et al. (8) to that of Formiga-Cruz et al. (6)
on the combined country data set, the relative importance of B.
fragilis phages is reduced, with only F-specific coliphage show-
ing significance in the combined regression results. The flood
and thaw event that happened in Sweden during the time of
study had a unique influence on the underlying pattern be-
tween indicators and this human virus that does not appear
when the data from multiple countries are combined.

Differences between the underlying patterns between indi-
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cators and pathogens between different countries support the
idea that there is no ideal model that can be exported blindly
from one area to another, but that a localized approach be
proposed and verified. There are many factors that may indi-
vidualize the underlying patterns between the pathogen re-
sponse to be modeled and the input variables. Some countries
may wish to include variables that are of local import. In the
original database from the study by Formiga-Cruz et al. (6),
there was information gathered on other potential input pa-
rameters (pH, water temperature, salinity, oxygen content, and
turbidity), which while not found to be useful for prediction of
viral presence in their study, may be significant locally. The
impact of the aforementioned flood event in Sweden is a good
example of the potential of some of these parameters to impact
prediction models and river flow, or changes in river flow,
could have been a valuable input parameter for the harvest
beds under study. The inclusion of the input variable month in
the ANN that resulted in improved prediction of NLV pres-
ence supports this idea. Individual countries should develop
monitoring based ANN models that utilize the indicators most
linked to the pathogens in their environments, and that re-
quires funding of intense localized study as well as large-scale
collaborations so discoveries can be made, and compared, on
both scales. Since larger databases, obtained by combining
data from multiple areas, allow researchers and policy analysts
to expand their understanding of general indicator pathogen
relationships, ANN modeling could be applied as a new way to
evaluate if databases from geographically separate areas
should be combined, rather than relying upon statistical meth-
ods that are very sensitive to the underlying data distribution.

Conclusions. ANN modeling can provide insight into the
relationships between viral pathogens and their indicators.
Analysis of different groups of bacteriophage and the bacteria
they infect may yet provide the basis for viral shellfish quality
control, especially when used in a combined indicator system
that is attuned to unique geographic and temporal character-
istics through the application of ANN and other advanced
modeling techniques. The ideal set of indicators and input
parameters for modeling has yet to be defined, and is likely
subject to some geographical differences, but this study shows
that ANN models can provide improved description and more
accurate prediction of viral presence than MLR models on the
same set of input parameters where the number of data ob-
servations is adequate for their training. In the same way that
the number of samples are built into the sampling scheme for
research utilizing traditional statistical methods, studies plan-
ning on applying ANN models must assure that enough obser-
vations are obtained to support training and validation studies
so that model performance is evaluated on generalization as
well as overall accuracy, sensitivity, and selectivity. The find-
ings of this study, and our experience with other studies utiliz-
ing microbial databases, suggest that the utility of ANNs be
more widely explored, in concert with traditional statistical
methods, to obtain the most benefit from environmental stud-
ies.
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